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ABSTRACT
Binary user-behavior logs such as clicks or views, called implicit
feedback, are often used to build recommender systems because

of its general availability in real practice. Most existing studies

formulate implicit feedback as binary relevance feedback. However,

in numerous applications, implicit feedback is observed not only as

a binary indicator but also in a graded form, such as the number of

clicks and the dwell time observed after a click, which we call the

graded implicit feedback. The grade information should appropri-

ately be utilized, as it is considered amore direct relevance data com-

pared to the mere implicit feedback. However, a challenge is that

the grade information is observed only for the user–item pairs with

implicit feedback, whereas the grade information is unobservable

for the pairs without implicit feedback. Moreover, graded implicit

feedback for some user–item pairs is more likely to be observed

than for others, resulting in the missing-not-at-random (MNAR)

problem. To the best of our knowledge, graded implicit feedback

under the MNAR mechanism has not yet been investigated despite

its prevalence in real-life recommender systems. In response, we

formulate a recommendation with graded implicit feedback as a

statistical estimation problem and define an ideal loss function of

interest, which should ideally be optimized to maximize the user

experience. Subsequently, we propose an unbiased estimator for the

ideal loss, building on the inverse propensity score estimator. Finally,

we conduct an empirical evaluation of the proposed method on a

public real-world dataset.
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1 INTRODUCTION
Recommender systems constitute a central part of numerous exist-

ing online platforms, such as e-commerce (e.g., Amazon and Etsy)
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and content recommendation platforms (e.g., Netflix, YouTube, and

Spotify). The essential step in building such systems is to accurately

estimate the relevance of user–item pairs. A version of user–item

relevance feedback, called implicit feedback, is often used for solving
this task. Implicit feedback is collected from natural behaviors of

users in recommender systems, and it is generally available in large

volumes, as expert annotation or crowd sourcing is unnecessary.

Most existing studies focus on learning or evaluating recommenders

using the binary implicit feedback, for example, an indicator of

whether an item is clicked by a user [5, 10, 11, 14, 15, 18, 23]. How-

ever, in numerous application domains, implicit feedback involves

not just binary relevance feedback, but it is observed in a graded
form, such as the number of clicks [7]. The so-called graded implicit
feedback can be considered as a more informative form of relevance

feedback compared to the binary counterpart [7]. This is because

graded implicit feedback contains the level of the relevance, and the

grade information should be useful to better capture the user–item

relevance. However, a difficulty is that the grade information is ob-

servable only for the user–item pairs with a click, whereas that for

the pairs without a click is unobservable. Furthermore, the graded

information for several pairs of users and items is more likely to

be observed as compared with others. For example, if we deploy

a popularity-based recommendation policy that recommends pop-

ular items with high probabilities in the past, the graded implicit

feedback for the popular items is much easier to be observed com-

pared with that for rare items [2, 23]. Therefore, the graded implicit

feedback is often missing-not-at-random (MNAR), as depicted in

Figure 1, and one has to address this biased missing mechanism to

adequately improve the user satisfaction [18, 20].

Related Work. Some works employed graded implicit feedback

to train recommendation models. Lerche and Jannach [9] modified

the loss function of Bayesian personalized ranking (BPR) using

confidence weights, which were estimated based on the difference

in the reception times of two messages in a Twitter application.

Another related work is Wang et al. [21], wherein a new set of

triplets that comprised a user and two items was created based on

the graded implicit feedback to train BPR, improving the recom-

mendation accuracy of the vanilla BPR [7, 9]. However, all existing

studies on the graded implicit feedback implicitly assumed the

missing-completely-at-random mechanism, where the probability of

observing the graded implicit feedback is uniform among all the

user–item pairs. This assumption is unrealistic in many real-life
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Figure 1: Missing-not-at-random (MNAR) problem of the
graded implicit feedback. The training space comprises
user–item pairs with a click (𝑌 = 1), and therefore, does not
represent the entire inference space,which comprises all the
user–item pairs (D).

situations, as implicit feedback is often confounded by various fac-

tors, such as the past recommendation policy [2, 13] and position

bias [8, 22]. To the best of our knowledge, no theoretical framework

exists in the literature that is able to handle the MNAR the graded

implicit feedback, thereby limiting the real-world application of the

methods leveraging this type of feedback.

Contributions. To better utilize graded implicit feedback, we for-

mulate a recommendation using the MNAR graded implicit feed-

back from a statistical estimation perspective, which allows us to

theoretically characterize the bias in using the graded implicit feed-

back. Based on our formulation, we first define an ideal loss function

of interest that should be optimized to maximize the relevance in

the platform. We then demonstrate that the naive procedure, which

ignores the MNAR mechanism, is an inappropriate practice and is

subject to a statistical bias. Subsequently, we propose an unbiased es-

timator for the ideal loss function inspired by the inverse propensity
score (IPS) estimator in causal inference [6, 16–19, 23]. The pro-

posed estimator is unbiased for the ideal loss function by weighting

the value of the loss function for each user–item pair using the

inverse of the propensity score. Furthermore, we demonstrate that

the propensity score is estimatable in an unbiased fashion in our

graded implicit feedback setting, even under the MNARmechanism.

Finally, we empirically demonstrate that the proposed unbiased

learning procedure outperforms various existing baseline methods

on real-world data.

2 PRELIMINARIES
2.1 Problem Setting
Let 𝑢 ∈ U be a user (|U|= 𝑚), 𝑖 ∈ I be an item (|I |= 𝑛), and

D = U × I be the set of all user-item pairs. Let 𝑌𝑢,𝑖 be a Bernoulli

random variable, which represents the binary implicit feedback
observed between 𝑢 and 𝑖 . If implicit feedback between 𝑢 and 𝑖 is

observed, then 𝑌𝑢,𝑖 is equal to 1, otherwise, it takes 0. Here, 𝑌𝑢,𝑖 = 1

represents the positive relationship between the user-item pair. In

contrast, 𝑌𝑢,𝑖 = 0 does not always imply a negative relationship.

This is because implicit feedback is never observed when the user

is unaware of the item, despite the fact that the item is potentially

relevant to the user. To accurately model this implicit nature, we

introduce two additional random variables. The first is the binary

relevance random variable, denoted by 𝑅𝑢,𝑖 . This random variable

represents the relevance between user 𝑢 and item 𝑖 , i.e., if item 𝑖 is

relevant to user 𝑢, 𝑅𝑢,𝑖 is equal to 1, otherwise it is equal to 0. The

second is the binary awareness random variable, denoted by 𝑂𝑢,𝑖 .

This random variable represents whether a user 𝑢 is aware of an

item 𝑖 .

Note that, in the binary implicit feedback setting, both the rel-

evance and awareness random variables are unobserved, and
only the binary implicit random variable is observable. Follow-

ing the implicit feedback generation model used in previous stud-

ies [10, 15, 18], we assume the following relationships between the

implicit feedback, relevance, and awareness random variables.

Assumption 2.1. Positive implicit feedback between a user-item
pair is observed if and only if the item is relevant to the user and the
user is aware of the item, i.e., 𝑌𝑢,𝑖 = 𝑂𝑢,𝑖 · 𝑅𝑢,𝑖 .

This assumption implies that the item has to be relevant to the

user (𝑅𝑢,𝑖 = 1), and the user has to be aware of the item (𝑂𝑢,𝑖 = 1)

for the implicit feedback to be observed (𝑌𝑢,𝑖 = 1).

In the binary implicit feedback setting (BI), we can observe only

the binary implicit feedback, and the training dataset for learning

recommendation algorithms can be represented as:

D𝐵𝐼 = {(𝑢, 𝑖, 𝑌𝑢,𝑖 )}(𝑢,𝑖)∈D
In contrast, in our graded implicit feedback setting (GI), we

assume that the confidence score of a user-item pair being relevant

to each other (𝛾𝑢,𝑖 ) is observable as grade information only for the

pair with implicit feedback (𝑌𝑢,𝑖 = 1). Therefore, the training dataset

for learning recommendation algorithms in the GI setting can be

represented as:

D𝐺𝐼 = {(𝑢, 𝑖, 𝛾𝑢,𝑖 ) |𝑌𝑢,𝑖 = 1}
(𝑢,𝑖)∈D

This GI setting is general in many application domains. For exam-

ple, in the music recommendation problem, the dwell or consump-

tion times that are observed after the click of a song are considered

as interest signals with different strengths [4, 24]. Another example

is the repeated consumption of items in an online media service,

which should be interpreted as a stronger signal than a single con-

sumption event [7]. We formulate these types of general real-world

situations by treating the relevance parameter 𝛾𝑢,𝑖 as different lev-

els of relevance signal. This formulation allows us to understand

the bias of the MNAR graded implicit feedback from a theoretical

perspective.

2.2 Ideal Loss Function of Interest
Here, we describe the objective of this study. To evaluate recom-

mendation algorithms in the BI setting, top-N recommendation

metrics such as themean average precision (MAP), discounted cumu-
lative gain (DCG), and recall are often used [12, 23]. To measure the

improvement in user experience by recommendation algorithms,

we rely on the following top-N recommendation metric defined

with the ground-truth relevance level.

R𝑟𝑒𝑙

(
𝒁
)
=

1

|U|
∑
𝑢∈U

∑
𝑖∈I

𝛾𝑢,𝑖︸︷︷︸
relevance level

· 𝑐
(
𝑍𝑢,𝑖

)
(1)



The focus of this study is to optimize the performance metric

in Eq. (1). To achieve this goal, we aim at optimizing the following

ideal pointwise loss function, which is designed to minimize the

prediction loss for the ground-truth relevance parameter.

L𝑟𝑒𝑙
𝑖𝑑𝑒𝑎𝑙

(𝑓 ) =
1

𝑚𝑛

∑
(𝑢,𝑖)∈D

𝛾𝑢,𝑖𝛿
(1)
(𝑓 (𝑢, 𝑖)) +

(
1 − 𝛾𝑢,𝑖

)
𝛿 (0)(𝑓 (𝑢, 𝑖)) (2)

where 𝑓 : D → [0, 1] is a relevance predictor and 𝛿 (𝑅) denotes the

local loss for the user-item pair (𝑢, 𝑖). For example, if 𝛿 (𝑅)(𝑓 (𝑢, 𝑖)) :=

(𝑅 − 𝑓 (𝑢, 𝑖))2, then Eq. (2) is referred to as the mean squared loss. In

the following, we use 𝛿 (·)(𝑓 (𝑢, 𝑖)) to denote 𝛿
(·)
𝑢,𝑖

for simplicity.

A relevance predictor 𝑓 , minimizing the ideal loss defined using

the relevance level in Eq. (2), is expected to lead to the desired

values of the top-N recommendation metric in Eq. (1). However,

we cannot handle the ideal loss function directly in our GI setting,

as the ground-truth relevance parameter for the user-item pair

without implicit feedback (i.e., (𝑢, 𝑖) with 𝑌𝑢,𝑖 = 0) is unobservable.

Therefore, accurately estimating the ideal loss function with only

observable data (i.e.,D𝐺𝐼 ) is important to maximize relevance from

biased graded implicit feedback.

3 METHOD
In this section, we first show that the naive use of graded implicit

feedback leads to a biased estimation of the ideal loss function.

Then, we propose an approach to unbiasedly estimate the ideal loss

function using only the biased graded implicit feedback.

3.1 Bias of Naive Estimator
To learn an arbitrary recommendation model on the graded implicit

feedback dataset D𝐺𝐼 , one can use the following naive estimator

for the ideal loss function.

Definition 3.1. The naive estimator for the ideal loss function is

L̂𝑟𝑒𝑙
𝑁𝑎𝑖𝑣𝑒 (𝑓 ) :=

1

|D𝐺𝐼 |
∑

(𝑢,𝑖)∈D𝐺𝐼

𝛾𝑢,𝑖𝛿
(1)

𝑢,𝑖
+ (1 − 𝛾𝑢,𝑖 )𝛿 (0)𝑢,𝑖

=

1

𝑚𝑛

∑
(𝑢,𝑖)∈D

𝑌𝑢,𝑖

𝜋

(
𝛾𝑢,𝑖𝛿

(1)

𝑢,𝑖
+ (1 − 𝛾𝑢,𝑖 )𝛿 (0)𝑢,𝑖

)
(3)

where 𝜋 = |D𝐺𝐼 |/𝑚𝑛 is the sparsity of the GI training dataset.

The above naive estimator is feasible, as it uses only the grade

information for user-item pairs with observed implicit feedback

(𝑌𝑢,𝑖 = 1). However, the following proposition indicates that naive

use of graded implicit feedback can lead to a sub-optimal recom-

mender.

Proposition 3.2. The naive estimator in Eq. (3) is statistically
biased against the ideal loss function of interest in Eq. (2), i.e., for some
given 𝑓 we have E[L̂𝑟𝑒𝑙

𝑁𝑎𝑖𝑣𝑒
(𝑓 )] ̸= L𝑟𝑒𝑙

𝑖𝑑𝑒𝑎𝑙
(𝑓 ), where the expectation is

taken over the relevance and awareness random variables.

Proof. First, we calculate the expectation of the naive estimator

below.

E
[
L̂𝑟𝑒𝑙
𝑁𝑎𝑖𝑣𝑒 (𝑓 )

]
=

1

𝑚𝑛

∑
(𝑢,𝑖)∈D

E[𝑌𝑢,𝑖 ]

𝜋

(
𝛾𝑢,𝑖𝛿

(1)

𝑢,𝑖
+ (1 − 𝛾𝑢,𝑖 )𝛿 (0)𝑢,𝑖

)
=

1

𝑚𝑛

∑
(𝑢,𝑖)∈D

𝜃𝑢,𝑖𝛾𝑢,𝑖

𝜋

(
𝛾𝑢,𝑖𝛿

(1)

𝑢,𝑖
+ (1 − 𝛾𝑢,𝑖 )𝛿 (0)𝑢,𝑖

)

Therefore, for the naive estimator to satisfy the unbiasedness, the

probability of observing implicit feedback must be a constant, i.e.,

𝜃𝑢,𝑖𝛾𝑢,𝑖 = 𝜋, ∀(𝑢, 𝑖) ∈ D. However, this necessary condition is vio-

lated in the MNAR situation, i.e, 𝜃𝑢,𝑖𝛾𝑢,𝑖 may not be a constant, and

the naive estimator is subject to bias in the sense that its expectation

is not equal to the ideal loss for some given 𝑓 . □

As shown in Proposition 3.2, the expectation of the naive esti-

mator is not necessarily equal to the ideal loss function. This is

because the naive estimator ignores the distributional shift between

the user-item pairs with and without implicit feedback. Therefore,

the naive use of graded implicit feedback is an inappropriate ap-

proach to approximate the ideal loss function. Instead, one should

rely on an estimator alleviating the bias alternative to using the

naive estimator.

3.2 The Proposed Unbiased Estimator
To alleviate the bias of the graded implicit feedback, we propose

the following unbiased estimator.

Definition 3.3. The unbiased estimator for the ideal loss function
is defined as

L̂𝑟𝑒𝑙
𝑈𝐵 (𝑓 ) :=

1

𝑚𝑛

∑
(𝑢,𝑖)∈D𝐺𝐼

1

𝜃𝑢,𝑖

(
𝛿
(1)

𝑢,𝑖
+

1 − 𝛾𝑢,𝑖
𝛾𝑢,𝑖

𝛿
(0)

𝑢,𝑖

)
=

1

𝑚𝑛

∑
(𝑢,𝑖)∈D

𝑌𝑢,𝑖

𝜃𝑢,𝑖

(
𝛿
(1)

𝑢,𝑖
+

1 − 𝛾𝑢,𝑖
𝛾𝑢,𝑖

𝛿
(0)

𝑢,𝑖

)
, (4)

where the awareness parameter 𝜃𝑢,𝑖 is interpreted as the propensity
score in the GI setting.

The following proposition states that the proposed unbiased

estimator is unbiased for the ideal loss function.

Proposition 3.4. The unbiased estimator in Eq. (4) is statistically
unbiased against the ideal loss function of interest in Eq. (2), i.e., for
any given relevance predictor 𝑓 , we have E[L̂𝑟𝑒𝑙

𝑈𝐵
(𝑓 )] = L𝑟𝑒𝑙

𝑖𝑑𝑒𝑎𝑙
(𝑓 ),

where the expectation is taken over the relevance and awareness
random variables.

Proof.

E
[
L̂𝑟𝑒𝑙
𝑈𝐵 (𝑓 )

]
= E

[
1

𝑚𝑛

∑
(𝑢,𝑖)∈D

𝑌𝑢,𝑖

𝜃𝑢,𝑖

(
𝛿
(1)

𝑢,𝑖
+

1 − 𝛾𝑢,𝑖
𝛾𝑢,𝑖

𝛿
(0)

𝑢,𝑖

)]
=

1

𝑚𝑛

∑
(𝑢,𝑖)∈D

E[𝑌𝑢,𝑖 ]

𝜃𝑢,𝑖

(
𝛿
(1)

𝑢,𝑖
+

1 − 𝛾𝑢,𝑖
𝛾𝑢,𝑖

𝛿
(0)

𝑢,𝑖

)
=

1

𝑚𝑛

∑
(𝑢,𝑖)∈D

𝛾𝑢,𝑖𝛿
(1)

𝑢,𝑖
+ (1 − 𝛾𝑢,𝑖 )𝛿 (0)𝑢,𝑖

= L𝑟𝑒𝑙
𝑖𝑑𝑒𝑎𝑙

(𝑓 )

□

Proposition 3.4 suggests that the proposed unbiased estimator is

statistically unbiased for the ideal loss function; one can unbiasedly

approximate the ideal loss function of interest using only biased

graded implicit feedback with this estimator.



3.3 Unbiased Propensity Estimation
The proposed unbiased estimator requires the true value of the

awareness parameter 𝜃𝑢,𝑖 . However, in our setting, the ground-truth

awareness parameters are unobserved and need to be estimated

from the data. For estimating this parameter, we should optimize

the following loss function.

L𝑠𝑐𝑜𝑟𝑒
𝑖𝑑𝑒𝑎𝑙

(𝑔) :=
1

𝑚𝑛

∑
(𝑢,𝑖)∈D

𝜃𝑢,𝑖𝛿
(1)
(𝑔(𝑢, 𝑖)) + (1 − 𝜃𝑢,𝑖 )𝛿 (0)(𝑔(𝑢, 𝑖)) (5)

where 𝑔 : D → [0, 1] is an awareness parameter estimator.

However, the realizations of the awareness random variables

are unobserved in D𝐺𝐼 , and the direct optimization of Eq. (5) is

infeasible. Therefore, we propose the following unbiased estimator

to estimate the propensity score with only available data.

Definition 3.5. The unbiased estimator for propensity estimation
is defined as follows

L̂𝑠𝑐𝑜𝑟𝑒
𝑈𝐵 (𝑔) =

1

𝑚𝑛

∑
(𝑢,𝑖)∈D

𝑌𝑢,𝑖

𝛾𝑢,𝑖
𝛿
(1)

𝑢,𝑖
+

(
1 −

𝑌𝑢,𝑖

𝛾𝑢,𝑖

)
𝛿
(0)

𝑢,𝑖
(6)

Note that Eq. (6) depends on only observable data. This is because

the ground-truth relevance parameters can be used for the user-item

pair with implicit feedback (𝑌𝑢,𝑖 = 1), whereas those for the pair

without implicit feedback (𝑌𝑢,𝑖 = 0) are unnecessary to calculate

Eq. (6).

The following proposition provides a theoretical justification of

the unbiased estimator in Eq. (6).

Proposition 3.6. The unbiased estimator for the propensity esti-
mation in Eq. (6) is statistically unbiased for the loss function in Eq.
(5), i.e., for any given 𝑔, we have E[L̂𝑠𝑐𝑜𝑟𝑒

𝑈𝐵
(𝑔)] = L𝑠𝑐𝑜𝑟𝑒

𝑖𝑑𝑒𝑎𝑙
(𝑔).

Proof.

E

[
𝑌𝑢,𝑖

𝛾𝑢,𝑖
𝛿
(1)

𝑢,𝑖
+

(
1 −

𝑌𝑢,𝑖

𝛾𝑢,𝑖

)
𝛿
(0)

𝑢,𝑖

]
=

E[𝑌𝑢,𝑖 ]

𝛾𝑢,𝑖
𝛿
(1)

𝑢,𝑖
+

(
1 −
E[𝑌𝑢,𝑖 ]

𝛾𝑢,𝑖

)
𝛿
(0)

𝑢,𝑖

=

𝛾𝑢,𝑖𝜃𝑢,𝑖

𝛾𝑢,𝑖
𝛿
(1)

𝑢,𝑖
+

(
1 −

𝛾𝑢,𝑖𝜃𝑢,𝑖

𝛾𝑢,𝑖

)
𝛿
(0)

𝑢,𝑖

= 𝜃𝑢,𝑖𝛿
(1)

𝑢,𝑖
+

(
1 − 𝜃𝑢,𝑖

)
𝛿
(0)

𝑢,𝑖

Therefore, we obtain the unbiasedness of the estimator from the

linearity of the expectation operator. □

Thus, by using the unbiased estimator for the propensity esti-

mation, the unobserved awareness parameters can be estimated in

an unbiased fashion from only observable data.

4 EXPERIMENTAL EVALUATION
In this section, we empirically evaluate the proposed unbiased

learning framework on a public real-world dataset.

4.1 Experimental Setting
4.1.1 Dataset and Preprocessing. We use the Yahoo! R3

1
dataset

and employ the following preprocessing procedure.

1
http://webscope.sandbox.yahoo.com/

(1) Transform five-star ratings into grade information following

a methodology used in the information retrieval domain

[1, 3]:

𝛾𝑢,𝑖 = 𝜖 + (1 − 𝜖) 2
𝑟 − 1

2
𝑟𝑚𝑎𝑥 − 1

where 𝑟 ∈ {1, 2, 3, 4, 5} denotes a five-star rating, and 𝑟𝑚𝑎𝑥

is the maximum possible rating, which is 5 in our case. Ad-

ditionally, 𝜖 ∈ [0, 1] controls the noise level in the grade

information. We apply 𝜖 = 0.1 for the training datasets and

𝜖 = 0 for the test datasets to evaluate the recommenders

with the ground-truth (noise-free) relevance in the test sets.

(2) Sample binary relevance variable 𝑅𝑢,𝑖 by performing the

following Bernoulli sampling:

𝑅𝑢,𝑖 ∼ 𝐵𝑒𝑟𝑛(𝛾𝑢,𝑖 ), ∀(𝑢, 𝑖) ∈ D

where 𝐵𝑒𝑟𝑛(·) denotes Bernoulli distribution.
(3) Define the awareness variable for a user–item pair as follows:

𝑂𝑢,𝑖 =

{
1 (if item 𝑖 is rated by user 𝑢)

0 (if item 𝑖 is not rated by user 𝑢)

(4) Define dataset as: D𝐺𝐼 = {(𝑢, 𝑖, 𝛾𝑢,𝑖 ) |𝑌𝑢,𝑖 = 1}, where 𝑌𝑢,𝑖 =
𝑂𝑢,𝑖 · 𝑅𝑢,𝑖 . Note that 𝑅𝑢,𝑖 and 𝑂𝑢,𝑖 are unobservable in our

setting and are not used for training recommenders.

4.1.2 Compared Methods. We compare the following methods: (i)

Item popularity model (ItemPop): This method always recom-

mends the 𝑘 most clicked items in the training set; therefore, it

is not personalized. (ii) Naive matrix factorization (NaiveMF):
This model predicts the graded implicit feedback (i.e., 𝛾𝑢,𝑖 ) by op-

timizing the naive loss in Eq. (3) via MF [5]. It ignores the distri-

butional shift, and thus the loss function is biased. (iii) Exposure
matrix factorization (ExpoMF): This model is a state-of-the-art

method for the MNAR binary implicit feedback [10]. This method

is based on a probabilistic model that uses the exposure variable

and optimizes its parameters using an EM-algorithm-like proce-

dure. (iv) Relevance matrix factorization (Rel-MF) [18]: This

method is another state-of-the-art method for the MNAR binary

implicit feedback. It obtains the model parameters by optimizing

the unbiased loss function for the ideal loss function defined with

only the binary implicit feedback signals. (v)Matrix factorization
with unbiased estimator (MF-UB): This is our proposed method,

which obtains model parameters by optimizing the proposed un-

biased loss function in Eq. (4). We estimate the propensity score

based on the unbiased propensity estimation procedure described

in the previous section.

4.2 Results
We used DCG@K, Recall@K, and MAP@K to measure the recom-

mendation quality in the test sets. The values of 𝐾 were set to {3, 5}
for all metrics. Table 1 summarizes the ranking performances of all

methods on Yahoo! R3. It shows that the proposed MF-UB method

outperforms other baseline methods in all settings by utilizing the

graded implicit feedback in a theoretically grounded fashion. Specif-

ically, MF-UB outperformed the best baselines by 3.5% for DCG@5,

3.0% for Recall@5, and 3.9% for MAP@5. The results suggest that



Table 1: Evaluating the ranking performance of the proposed method against the baselines

DCG@K Recall@K MAP@K

Methods 𝐾 = 3 𝐾 = 5 𝐾 = 3 𝐾 = 5 𝐾 = 3 𝐾 = 5

ItemPop 0.26400 0.35476 0.30034 0.49539 0.30379 0.50232

NaiveMF 0.33509 0.42596 0.37393 0.56866 0.40950 0.64196

ExpoMF 0.32805 0.41591 0.36626 0.55477 0.40376 0.63031

Rel-MF 0.33523 0.42498 0.37479 0.56744 0.40909 0.64072

MF-UB (ours) 0.34856 0.44004 0.38845 0.58493 0.42872 0.66757

one can significantly improve the recommendation quality by ap-

propriately using the biased graded implicit feedback in the right

manner.

5 CONCLUSION
We explored a theoretically sophisticated method for improving

user experience with biased graded implicit feedback. In particular,

we formulated the problem as a statistical estimation problem to

address the inherent bias of the graded implicit feedback. We then

demonstrated that the naive use of the graded implicit feedback

could result in a sub-optimal recommendation, as it ignores the dis-

tributional shift between clicked and unclicked events. To address

the bias of the naive estimator, we proposed an unbiased estimator

for the ideal loss function, which can be estimated using observable

graded implicit feedback. We also experimentally demonstrated

that the proposed unbiased estimation approach outperformed the

widely used baselines by effectively utilizing additional grade in-

formation to infer the relevance.
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